Домой Продвижение Кейс: как увеличить объем лидов на 76% и при этом снизить стоимость...

Кейс: как увеличить объем лидов на 76% и при этом снизить стоимость привлечения заявки на 13%

32
0

Клиент, о котором пойдет речь, – кредитный брокер, профессионал на рынке финансовых услуг. Он обратился в агентство, так как хотел масштабировать бизнес. Важным условием было сохранить стоимость заявки на прежнем уровне. Мы взялись за эту задачу, поставив себе цель-максимум: не только принести больше лидов, но и снизить стоимость их привлечения.

Работа с семантикой: детальная кластеризация и результат в заявках

Тематика финансовых услуг высококонкурентная: стоимость клика может достигать 100 рублей и выше. В этой ситуации принципиально важна тщательная проработка семантики. Это позволяет настраивать более гибкие стратегии по управлению ставками, находить лазейки в менее «разогретый» аукцион, а в результате – снижать стоимость выкупаемого трафика, не теряя в объемах.

Проанализировав текущее семантическое ядро, мы выявили «узкие места»:

  • Неполное «покрытие» тематики. Семантическое ядро нуждалось в расширении. Часть финансовых продуктов, которыми занимался брокер, в принципе не была отражена в запросах. А те запросы, которые уже были собраны предыдущим подрядчиком, нужно было дополнять.
  • Не проработаны поисковые подсказки. Поисковые подсказки в Яндекс и Google – это по сути наиболее популярные «хвосты» к целевым запросам. Они отражают самые актуальные естественные запросы потенциальных клиентов. Нельзя упускать этот пул «горячих» запросов, особенно в тематике с активным аукционом.
  • Большой пул запросов в «мало показов». Статус «мало показов» автоматически присваивается рекламной системой группам с низкой частотностью. Такие группы исключаются из аукциона, т.е. объявления по запросам в них просто не показывались. Чтобы запросы работали, а не лежали мертвым грузом, нужно было пересмотреть их частотность и переформировать группы.

Устранив эти «узкие места», мы получили первоначальный результат в цифрах:

  • стоимость клика на поиске удалось снизить до – 11%;
  • объем целевого трафика с поиска вырос почти в 2 раза.

Но наша задача состояла не только в том, чтобы улучшить результаты на уровне синтетических показателей, но и показать эффективность в плане бизнес-результата – объема заявок и CPL.

Направление «Кредитный брокер» – общие запросы

Например, в кампаниях по общим запросам «Кредитный брокер» (ключевые слова, охватывающие услуги кредитного брокера, помощь в получении кредита и др.) семантика изначально была проработана слабо. Трафика было немного, заявок тоже. Но на наш взгляд, в этом направлении был большой потенциал для клиента – это направление можно было превратить в хороший генератор лидов. Мы полностью переработали семантику, существенно расширили ее – и это привело к взрывному росту заявок.

Сравниваем показатели год к году, так как на спрос, а то есть и на объем заявок существенно влияет сезонность и корректнее сравнивать результаты с учетом сезонности:

Даже если не брать октябрь (в этом месяце у прошлого подрядчика нет данных по заявкам) – прирост лидов по этому направлению год к году Х4.

Стратегия оказалась успешной, но было несколько “но”. Конкуренты активно выходили с агрессивными стратегиями, что отражалось на нестабильности CPL. Кроме того, учитывая разброс по среднему чеку заявок с этого направления, мы приняли решение скорректировать стратегию: перераспределить бюджет, чтобы высвободить ресурс и усиляться прицельно по финансовым продуктам.

Оптимальная структура: управление ставками «от продукта»

Детальная кластеризация семантики позволила нам перестроить структуру рекламных аккаунтов. Это было необходимо для управления настройками «от продукта». У разных финансовых продуктов разная маржинальность. Естественно, и CPL по каждому продукту должен был быть разным.

Реструктуризация аккаунта проводилась итерационно: начинали с наиболее приоритетных блоков, постепенно перестраивая кампании.

Оптимизация структуры и новая стратегия работы со ставками дали положительные плоды. Приведем в качестве примера результаты по наиболее топовым финансовым продуктам.

Ипотека

Удалось увеличить объем заявок примерно в 2 раза относительно результатов прошлого подрядчика. При этом CPL снизили на 19,4%.

Потребительские кредиты

Еще одно направление, в котором было далеко неполное “покрытие” семантики. За счет проработки запросов, реструктуризации кампаний в комплексе с верной стратегией удалось вырастить объем лидов в 8 раз. CPL при этом снизили на 26%.

Сетевые кампании: найти правильные связки и получить целевой трафик еще дешевле

Учитывая высокую стоимость клика на поиске, мы понимали, что нужно задействовать сети как дополнительный источник трафика и сразу заложили это в стратегию. Конечно, сетевой трафик имеет свою специфику. Он дешевле, чем поисковой, но значительно менее конверсионный и приводит заявки с более высоким CPL.

В первую очередь, важно понимать, что сетевой трафик работает на других этапах маркетинговой воронки.

Мы отказались от чисто охватных стратегий, понимая, что это больше имиджевая история и она может сильно завысить рекламные расходы. Вместо этого, мы сразу сосредоточились на 2–ом этапе воронки, а именно – сфокусировали сетевые кампании на тех, кто уже готов заказать услугу и находится в стадии принятия решения, куда именно обратиться за кредитом. Важно было таргетироваться на аудиторию, которая

  • уже сравнивает условия по кредитам/залогам/ипотеке и др. в разных банках,
  • рассматривает вариант обратиться к брокеру.

Это удалось успешно реализовать за счет правильных связок таргетингов:

  • комбинации соц–дем таргетингов и ключей
  • комбинации краткосрочных интересов и ключей
  • look a like – аудитория пользователей, похожих на текущих клиентов (рекламная система находит пользователей с похожими поведенческими характеристиками на основе данных из CRM)
  • места размещения
  • особые аудитории по интересам – в сетевых кампаниях Google Ads (настройка показа объявлений на определенный “портрет” целевой аудитории)

Ремаркетинговые сценарии также позволяли возвращать клиентов на сайт, пока они еще в стадии выбора. И минусовать аудиторию, которая уже оставила заявку, чтобы не расходовать средства впустую.

Конечно, не все так радужно. Если в РСЯ (рекламной сети Яндекса) мы вышли на нужный CPL в первый же месяц, то в КМС (рекламной сети Google) на это ушло 3 месяца. Тем не менее, результат был достигнут – мы получили дополнительный источник более дешевого трафика.

Мобильный трафик как точка роста: снижение CPL по части продуктов до 19%

Проанализировав первые результаты, мы обратили внимание, что по части финансовых продуктов конверсия в заявку выше для трафика с мобильных устройств. Это была точка роста: за счет увеличение доли мобильных, например, по ипотеке, мы рассчитывали повысить конверсию, а то есть дополнительно снизить CPL.

Для этого мы, во-первых, дополнительно проработали объявления. Добавили тексты, ориентированные на чтение непосредственно с мобильных устройств:

  • короче заголовок и текст,
  • обязательное наличие номера телефона в расширении, чтобы была возможность сразу позвонить, не заходя на сайт.

Во-вторых, разделили кампании на mobile и desktop, чтобы была возможность отдельно управлять бюджетами и ставками для каждого типа трафика. Правда, на этом этапе мы столкнулись с техническими ограничениями рекламных систем. Чтобы их обойти, нам пришлось поискать нестандартное решение.

Суть в следующем: в Google Ads выделить отдельно мобильные кампании не представляет проблемы, это решается за счет настроек по типу устройств. В Яндекс Директ на тот момент попросту не имелось технической возможности разделить mobile и desktop (функция раздельного управления устройствами появилась только с июня 2020 года). Максимально, что было можно сделать – выставить корректировку – 50% для мобильных. Это позволяло сделать акцент на трафик с персональных компьютеров, но выделить отдельно мобильные так не получится.

Тем не менее, мы нашли решение, хотя и неочевидное – разделение трафика провели с помощью настроек на уровне ставок. В мобильных кампаниях выставили ставки в 3 раза меньше, чем в аналогичной кампании на поиске, и настроили коэффициент на мобильные устройства +300%. В аналогичной кампании на десктопе выставили максимально допустимый коэффициент на мобильные – 50%.

Таким образом, при запросе на мобильных устройствах приоритет стал отдаваться мобильным кампаниям, так как у них ставка оказывалась выше, чем в кампании на десктопе.

За счет такого разделения нам удалось сместить акцент на мобильный трафик там, где он показывал более высокую конверсионность, и на выходе снизить CPL по ряду продуктов до – 19%.

Аналитика: максимальная прозрачность в данных

Клиент был доволен результатами, тем не менее, мы обратили внимание, что между внутренними данными клиента и тем, что мы видим в Analytics, есть несовпадение данных. Между системами аналитики и CRM такое расхождение достигало 10–15%. Несмотря на то, что оно не считается критичным, мы были заинтересованы – как и наш клиент – в том, чтобы максимально точно отслеживать реальный объем заявок.

В первую очередь мы провели полный аудит настроек аналитики:

  • корректность размещения кодов счетчиков
  • корректность настройки целей в системах аналитики
  • корректность передачи целевых событий на сайте
  • полнота UTM-разметки кампаний

Аудит не выявил ошибок, которые могли бы приводить к расхождению данных. Поэтому мы предположили, что проблема могла быть на этапе отправки данных в CRM. Как выяснилось, это было верное направление мысли: действительно, при попадании в CRM часть заявок неправильно атрибуцировалась – например, записывалась как заявка с прямого перехода, а не из контекстной рекламы.

Мы решили этот вопрос следующим образом: настроили прокидывание данных об источнике заявок напрямую в CRM. Это позволило минимизировать расхождение между системами аналитики и внутренними данными клиента.

Таким образом, и клиент, и мы получили еще большую прозрачность в плане анализа заявок и их конверсии в договор.

Результаты: прирост лидов +76%, стоимость лида снижена на 13%

Уже в первый месяц работы над проектом мы наблюдали положительную динамику. Но в объеме заявок пока отставали.

Тем не менее, за счет оптимизации и полной переработки семантики и структуры, нам удавалось планомерно растить объем лидов от месяца к месяцу.

Как мы уже говорили, сезонность в этой тематике достаточно серьезно влияет как на объем лидов, так и на CPL. Поэтому, конечно, для адекватной оценки нужно сравнивать результаты год к году. Отслеживание целевых действий в Analytics было настроено только с октября 2018. Поэтому данные для сравнения мы берем с октября.

Относительно объемов заявок, который приносил прошлый подрядчик, мы добились существенного роста лидов. Нам удалось привести максимум в 2,3 раза больше лидов за месяц, чем прошлому подрядчику. В среднем же прирост составил +76% лидов год к году. Одновременно мы снизили CPL на 13%, при этом в некоторые месяцы стоимость заявки удавалось снизить до 50%.

Вывод

Несмотря на высокую конкуренцию на рынке финансовых услуг, мы нашли продуктивную стратегию для того, чтобы масштабировать проект по заявкам. При этом мы не только избежали роста стоимости лида, но и снизили итоговый CPL.

В первую очередь, этого удалось достичь за счет формирования грамотной базы для старта рекламы. Здесь не последнюю роль сыграл анализ и проработка качества «покрытия» тематики. Расширение и детальная кластеризация семантики позволили по части продуктов достичь роста заявок до 8 раз.

Кроме того, копнув вглубь, мы смогли найти дополнительные точки роста: за счет разделения мобильного и десктопного трафика нам удалось дополнительно повысить конверсионность кампаний. Сетевые кампании удалось эффективно задействовать как дополнительный источник более дешевого трафика. А правильно подобранные связки таргетингов позволили нам контролировать качество трафика.

И наконец, оптимальная структура рекламных аккаунтов, управление ставками «от продукта» и прозрачность в аналитике позволили закрепить результат и выйти на стабильно высокие показатели. Как итог – максимальный рост заявок до 2,3 раз/мес, а в среднем +76% при снижении стоимости заявки на 13%.

Источник: seonews.ru

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here